Railways began reappearing in Europe after the Dark Ages. The earliest known record of a railway in Europe from this period is a stained-glass window in the Minster of Freiburg im Breisgau dating from around 1350.[6]
In 1515, Cardinal Matthäus Lang wrote a description of the Reisszug, a funicular railway at the Hohensalzburg Castle in Austria. The line originally used wooden rails and a hemp haulage rope, and was operated by human or animal power, through a treadwheel. The line still exists, albeit in updated form, and is probably the oldest railway still to operate.[7][8]
[edit] Early wagonways
Main article: Wagonways
Wagonways (or 'tramways') are thought to have developed in Germany in the 1550s to facilitate the transport of ore tubs to and from mines, utilising primitive wooden rails. Such an operation was illustrated in 1556 by Georgius Agricola.[9] These used the 'hund' system with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks, to keep it going the right way. Such a transport system was used by German Miners at Caldbeck, Cumbria, perhaps from the 1560s.[10]
The first true railway is now suggested to have been a funicular railway made at Broseley in Shropshire at some time before 1605. This carried coal for James Clifford from his mines down to the river Severn to be loaded on to barges and carried to riverside towns.[11] Though the first documentary record of this is later, its construction probably preceded the Wollaton Wagonway, completed in 1604, hitherto regarded as the earliest British installation. This ran from Strelley to Wollaton near Nottingham. Another early wagonway is noted onwards. Huntingdon Beaumont (who was concerned with mining at Strelley) also laid down broad wooden rails near Newcastle upon Tyne, on which a single horse could haul fifty or sixty bushels (130–150 kg) of coal.[12]
By the eighteenth century, such wagonways and tramways existed in a number of areas. Ralph Allen, for example, constructed a tramway to transport stone from a local quarry to supply the needs of the builders of the Georgian terraces of Bath. The Battle of Prestonpans, in the Jacobite Rebellion, was fought astride a wagonway.[13] This type of transport spread rapidly through the whole Tyneside coal-field, and the greatest number of lines were to be found in the coalfield near Newcastle upon Tyne, where they were known locally as wagonways. Their function in most cases was to facilitate the transport of coal in chaldron wagons from the coalpits to a staithe (a wooden pier) on the river bank, whence coal could be shipped to London by collier brigs. The wagonways were engineered so that trains of coal wagons could descend to the staith by gravity, being braked by a brakesman who would "sprag" the wheels by jamming them. Wagonways on less steep gradients could be retarded by allowing the wheels to bind on curves. As the work became more wearing on the horses, a vehicle known as a dandy wagon was introduced, in which the horse could rest on downhill stretches.
[edit] Rails
Because a stiff wheel rolling on a rigid rail requires less energy per ton-mile moved than road transport (with a highly compliant wheel on an uneven surface), railroads are highly suitable for the movement of dense, bulk goods such as coal and other minerals. This was incentive to focus a great deal of inventiveness upon the possible configurations and shapes of wheels and rails. In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. These (and earlier railways) had flanged wheels as on modern railways, but another system was introduced, in which unflanged wheels ran on L-shaped metal plates - these became known as plateways. John Curr, a Sheffield colliery manager, invented this flanged rail, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks. Meanwhile William Jessop, a civil engineer, had used a form of edge rail successfully for an extension to the Charnwood Forest Canal at Nanpantan, Loughborough, Leicestershire in 1789. Jessop became a partner in the Butterley Company in 1790. The flanged wheel eventually proved its superiority due to its performance on curves, and the composite iron/wood rail was replaced by all metal rail, with its vastly superior stiffness, durability, and safety.
The introduction of the Bessemer process for making cheap steel led to the era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron.
No comments:
Post a Comment